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Analyzing Network Traffic Data Using a Neural 
Network in the Statistical Computing Language R 
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Abstract— The analysis of network traffic is crucial to the design and implementation network detection systems. The R language is a 
statistical computing environment capable of performing a variety of data analysis techniques. In this paper, we will evaluate the R 
language for its ability to pre-process network data from the NSL-KDD dataset and use third-party packages to analyze this data. We will 
build a predictive model to classify testing data using a neural network from one of the widely available R packages. 
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1 INTRODUCTION
 is a programming language and development envi-
ronment used primarily for statistical analysis and 
graphics. As a widely available tool for statistics, many 

data scientists and statisticians use R for data processing, 
data analysis, and displaying visual data metrics. Although 
popular among data scientists, the R language has also been 
highly utilized by data miners, healthcare workers, gov-
ernment workers, and professionals in many other fields 
[1]. One field that has a very low utilization of this language 
is Information Security. Currently, Python is more favorable 
among security professionals due to its versatility and abil-
ity to be used as a scripting language, data processing lan-
guage, and programming language. 

R packages can be created to expand the initial set of 
capabilities contained by the language and are able to be 
processed by other statistics tools. In this paper the NSL-
KDD network dataset [2] will be used to evaluate several R 
packages and libraries to determine the efficiency of the use 
of R for detecting anomalies in network traffic. The ease of 
use and readability of the R language will be evaluated as 
well as the availability of popular libraries for completing 
common tasks. Our primary benchmark for determining 
the fit of the R language for completing security related 
work will be the ability of the language to produce mean-
ingful visuals and perform predictive tasks in machine 
learning such as detecting malicious network traffic in the 
context of intrusion detection. 

2 RELATED WORK 
2.1 Using R For Anomaly Detection in Network 

Traffic 
Dennis Hock and Martin Kappes evaluate the R lan-

guage for its ability to perform anomaly detection in net-
work traffic [3]. Hock and Kappes use R for data pre-
processing, analysis operations, and detection of anomalies 
in order to create an anomaly-based Intrusion Detection 

System entirely in R and support their process with exper-
iment driven results. An anomaly-based Intrusion Detec-
tion System identifies attacks by finding deviations from 
normal behavior. In order to evaluate R for use in Intrusion 
Detection Systems in general, the authors used a wide 
range of different properties and calculated their metrics 
using the R programming language. 

The authors propose an entirely R-based system of 
anomaly detection on the premise that the resulting system 
would allow for easier development of new detection 
methods [3]. In order to thoroughly test the practicality of 
the R language in such an application, a wide range of met-
rics are used to detect anomalies which can generally be 
divided into two categories: volume-based and feature-
based. 

Volume-based metrics detect anomalies on an overall 
network level by counting properties of flows. Feature-
based metrics use the information in packet headers to de-
tect anomalies and can be used to detect special attacks like 
a port scan that are not detectable via a volume-based 
method. The authors used correlation analysis as their pri-
mary test on their metrics, however, they also performed 
outlier detection and checked these metrics against thresh-
olds on the data in order to explore a wide range of tech-
niques in R. Aside from the use of tshark to extract data 
from the traffic dumps, no outside software or libraries 
were used to for the correlation analysis. The authors then 
derived the metrics from their sample data and performed a 
correlation analysis between abnormal data and their ex-
ample traffic. The authors concluded that the R language is 
fully capable of both data pre-processing and analyzing 
network traffic without the use of any third part R packag-
es. 

2.2 A Study on NSL-KDD Dataset for Intrusion 
Detection System Based on Classification 
Algorithms 

The NSL-KDD Dataset is a highly refined and improved 
version of the KDD cup99 data set [4]. The NSL-KDD data 
set is made up of labeled network connection vectors from 
the same data that comprises the KDD cup99 data set. In 
this work, Dhanabal and Shantharajah outline the various 
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features of each of the network connection vectors in the 
data set and relate each attack type to their various category 
of packet. The authors also briefly reflect on the improve-
ments that were made on the original data set and what 
issues were addressed by those improvements. 

The authors then analyze classification techniques for 
detecting abnormal traffic and different methods of pre-
processing the vector data for classification. A main focus of 
their efforts to pre-process the data rely on feature selection 
of the vectors. Many classification techniques are more ac-
curate when applied to normalized data; the authors fo-
cused on using the J48, SVM, and Naïve Bayes classification 
methods on the NSL-KDD dataset. The J48, SVM, and Na-
ïve Bays methods resulted in around a 98%, 95%, and 74% 
classification accuracy respectively [4]. 

The authors conclude that the NSL-KDD dataset is the 
best available dataset to simulate realistic network traffic 
and test the performance of different IDS methods. The au-
thors also identified that an initial analysis and observation 
phase improves the ability for the researcher to visualize 
correlation in different vector features before pre-processing 
and classifying the data. 

2.3 A Pre-Clustering Method to Improve Anomaly 
Detection 
While anomaly detection is a widely accepted method 

of detecting network misuse, the authors of this paper posit 
that normal events outside of optimal activity such as un-
predictable user actions or application changes could de-
crease the predictive power of an IDS model. They evaluate 
the use of pre-clustering or ‘pre-sorting’ of data in order to 
mitigate the effects of false positives. The authors test pre-
clustering methods based on different features of the sam-
ple network traffic they use such as clustering based up IP 
Address, different network traffic characteristics, and appli-
cation layer protocols [5]. 

Since anomaly detection works to detect differing statis-
tical deviations from the normal flow of network traffic, one 
of the many advantages this method has is to detect previ-
ously unseen events over a network. This way, a model 
does not have to be trained for every possible attack or up-
dated when the attack space changes, the detection system 
can evolve to match the exterior threats. Coupled with an 
outlier detection algorithm, pre-clustering can very effec-
tively increase the odds of proper classification when train-
ing a predictive model. The authors focus on three primary 
metrics used to outline the properties of network traffic: IP 
Addresses, flow characteristics, and Principle Component 

Analysis/k-means clustering [5]. 

In order to effectively cluster IP addresses, the authors 
attempted to separate traffic into subnets associated with 
the local area network of the sender. Clustering by flow 
characteristics was mainly achieved by separating data by 
flow duration, byte size, and number of packets per flow 
[5]. Since flow characteristics have historically been used to 
predict application layer information, the authors hoped to 
use this method to classify all data according to application 
use. Finally, all of the data was split by application layer 
protocols using a machine learning algorithm to perform a 
k-means clustering of the data. Each resulting cluster has 
the ability to potentially simplify the detection of certain 
classes of attacks. 

Clustering by each of these three methods increased the 
ability of an anomaly detection system to detect network 
anomalies by 36%. The authors used ROC curves to calcu-
late the ultimate tradeoff between true positives and false 
positives. The area under the curve of the detection without 
clustering was 0.47 while the area under the curve of detec-
tion with clustering was 0.83. The authors concluded that 
clustering by these methods significantly increased the per-
formance of methods of anomaly detection. 

2.4 Performance Analysis of NSL-KDD Dataset Using 
ANN 

    In this paper, the NSL-KDD dataset is analyzed using 
ANN or Artificial Neural Network. Using an ANN, the au-
thors construct a model to provide intrusion detection 
based upon network traffic vectors. They use the neural 
network to detect both binary data (attack or normal traffic) 
and classification by attack type (there are five attack types 
in the NSL-KDD dataset). This paper is focused on intru-
sion detection surrounding smart and IoT devices, but the 
methods used to develop the predictive model can be gen-
eralized to any network. The authors used a variety of per-
formance metrics and used these metrics to attain better 
results with increased accuracy. 

After gathering the results from the neural network 
when applied to the NSL-KDD dataset, they found an 
81.2% detection rate for binary attack vectors and a 79.9% 
detection rate for classification of attacks [6]. In order to test 
the performance of their predictive model against a bench-
mark, the authors compared their results with that of pre-
existing intrusion-detection schemes and found that their 
system had a higher detection rate and performed well in 
all categories, both for binary attack data and attack type 
classification. 
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3 EXPERIMENTAL METHODS 

3.1 Initial Observation of Raw Vectors 

Before any processing or normalization was performed 
on the data vectors, we performed an initial observational 
analysis on the data to determine any pre-existing correla-
tions that may exist between different features. A variety of 
different feature combinations were checked, only a select 
few of which were useful. We defined a useful visualization 
as one that showed a clear correlation of data in a strong 
enough pattern as to warrant investigation. Visualization 
was conducted in the form of scatter plots using the qplot 
function from the ggplot2 R library [7]. 

As can be seen in Figure 1, there is a relatively strong 
correlation between TCP flag and the service that was used 
in the attack. From here we can see that the S0 flag is a 
strong predictor for a DoS attack and that RSTR and SH 
flags are strong predictors for Probe attacks. There is no 
strong correlation between any other flag and attack type. 
In figure 2, protocol type was plotted against the duration 
of the connection. Here we discovered that virtually no ma-

licious packets were sent using UDP or ICMP protocols al-
lowing us to filter out around 18.5% of the traffic when ana-
lyzing malicious packets in isolation.  

Additionally, it should not be ignored that a majority of 
the malicious traffic is of the tcp packet type. When looking 
at the number of failed logins compared to the service that 
was used for login, it is worth noting that any number of 
failed logins greater than or equal to five using an FTP ser-
vice is a  
strong indicator of a r2l attack. This relationship can be seen 
in figure 3. When checking the count of source bytes against 
the duration of the connection, we can see that for a source 
byte count over 5e+08, a probe attack type is highly likely. 
Additionally, any source byte count over 5e+04 also seems 
to strongly indicate a Probe type attack. 

When duration was plotted against source, but with a 
third axis of the number of source bytes associated with the 
packet, we can see a clear correlation between the size of 
the packet (number of source bytes) and the duration of the 
connection. A larger duration seems to be predictive of a 

Fig. 1. Duration of the network connection vector plotted against 
the protocol type of the connection vector. Attack type is color 
coded. 

Fig. 3. The number of failed logins to a user given a connection 
vector plotted against the service used by that connection. At-
tack type is color coded. 

Fig. 4. The number of source bytes transmitted by the connec-
tion vector plotted against the duration of the connection. Attack 
type is color coded. 

Fig. 2. Service used by the connection vector plotted against 
TCP flag. Attack type is color coded. 
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packet having an abnormally high number of source bytes. 
This relationship can be seen in figure 5. 

3.2 Automated Pre-Processing with Boruta 
Many of the same processing, machine learning, and 

deep 
learning libraries that are available for Python are also avail-
able in R. For this project, we have decided to use Boruta to 
determine the importance of each column in predicting an 
attack output. Boruta is an open source library that works by 
searching for relevant features in a dataset to determine im-
portance by comparing selected features correlation against 
a random selection of predictors [8]. By using Boruta to test 
features in our data set for importance, we can effectively 
pre-process our data to eliminate superfluous or non-
predictive columns in our data set. In creating the Boruta 
object, we checked the feature relevant importance of the 
service against the type of attack that the vector was labeled 
for with a maximum of 20 iterations through the generated 
search tree. The relevant library function we used to retrieve 
the results was getSelectedAttributes(). 

Boruta classifies a feature as one of three possible levels of 
predictive qualities; a dataset feature is either important, 
unimportant, or tentative [8]. The tentative category is re-
served for features that were found to be within a certain 
margin of the importance cutoff, but needed to be run 
through the more iterations of Boruta’s algorithms in order 
to be strictly classified as either important or unimportant. It 
is possible for all features to be classified, but what deter-
mines how fast (and under how many iterations) a dataset 
can be fully classified depends on the hardware on which 
the program is run. For instance, for the NSL-KDD dataset, 
the Boruta function was run on two different machines with 
differing hardware specifications. The faster computer was 
able to classify all features in just 13 iterations in a period of 
11 minutes while the slower computer could only classify 38 
out of 41 features over 20 iterations in a period of 60 

minutes. Both trial results as well as hardware specifications 
can be found in table A. 

TABLE I.  HARDWARE SPECIFICATIONS 

Iterations Hardware Specifications 
Processor Memory GPU 

11 (11 min) 3.20 GHz Intel Xeon CPU 
E5-2667 v4 128 GB 

NVIDIA 
NVS 310 

19 (60 min) 2.3 GHz Dual-Core Intel 
Core i5 

8 GB 2133 
MHz 
LPDDR3 

Intel Iris 
Plus 
Graphics 
640 1536 
MB 

    After running 19 iterations over the course of 60 minutes, 
3 features were determined to be unimportant (is_hot_login, 
num_outbound_cmds, urgent) and 3 features were tentative 
(num_access_files, num_shells, su_attempted). Running a 
second trial on a faster computer confirmed all tentative 
features to be important, eliminating 3 columns from our 
data set due to lack of importance. In order to evaluate the 
performance of all selected features, we used the getSelecte-
dAttributes() function to retrieve scoring information from 
Boruta. The highest ranking feature was determined to be 
protocol_type with a median importance level of 34.330594. 
The top 5 important network features and their stats can be 
found in table B. 

TABLE II.  IMPORTANCE BENCHMARKS FOR NETWORK FEATURES 

Feature 
Importance Benchmarks for Network Fea-

tures 
Mean Importance Min Im-

portance 
Max Im-
portance 

Protocol_type 34.330594 32.520757 36.0546544 
Wrong_fragme
nt 32.695304 30.513209 33.8031660 

Src_bytes 29.944937 28.694210 31.8848235 

Srv_count 29.574201 26.431805 31.3077636 
Dst_host_same
_src_port_rate 28.167884 27.003862 29.3803172 

According to Dhanabal and Shantharajah as defined in [4], 
protocol_type is simply the IP protocol that was used for a 
specific network connection. Wrong_fragment is the number 
of IP fragment packets that do not belong to the connection. 
Src_bytes is considered the number of bytes from the source 
of the packet. Srv_count is defined as the “Number of connec-
tions to the same service (port number) as the current connec-
tion in the past two seconds.” [4]. Finally, 
dst_host_same_src_port_rate is defined as “The percentage of 
connections that were to the same source port, among the con-
nections aggregated by feature 33 (the number of connections 
having the same port number.” [4]. It can be concluded from 
the results after pre-processing that the aforementioned fea-
tures are the five most important features to consider when 
building a predictive model for network attacks. 

Fig. 5. Duration of the connection plotted against the service 
used with the number of source bytes on a third axis.  
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3.3 Building a Predictive Model with nnet 
For each implementation of our predictive model (i.e. 

one that detects network anomalies), we will try to build 
our model with and without the features that we deter-
mined to be unimportant in order to determine what effect 
on efficiency of the building and training process it has (if 
any). Each trial was also conducted with and without pre-
clustering to allow for a variety of pre-processing tech-
niques to be utilized. This predictive model was generated 
using a neural network generated by the R Library nnet [8]. 
Nnet is a “Software for feed-forward neural networks with 
a single hidden layer, and for multinomial log-linear mod-
els” [9]. In order to factor our data frame such that the data 
can be processed correctly, all of the imported csv data had 
to be sorted into categories labeled by attack. Once this pre-
processing step was complete, the training of the neural 
network could begin. We wanted to get a thorough, but 
accurate sample from our data with which to train our neu-
ral network.  

In order to accomplish this, we selected a randomized 
sample of size 5000 from a slice of the first 10000 rows or 
our data, then a second slice from the second 10000 rows of 
our data and so on. We then called the nnet subroutine [8] 
and passed in the following arguments: we trained based 
upon the attack type using our training data provided in 
the NSL-KDD data set, used a subset of our randomized 
sample slices, used a neural network consisting of 5 neu-
rons, a decay of 1.0e-5 and a maximum of 500 training itera-
tions. After training, we imported the test data (also pro-
vided in the NSL-KDD dataset) and used our predictive 
model to predict the outcome of all test network connection 
vectors. In order to accomplish this, we used nnet’s predict 
subroutine passing in our trained neural network and the 
test data. Finally, we displayed the resulting data in a table 
format and calculated the percentage of connection vectors 
that were correctly predicted as the correct attack type 
(normal data was also included and predicted with an at-
tack type of N/A). The results from this process are shown 
in table III below. 

TABLE III.  RESULTS FROM ATTACK DETECTION VIA NEURAL 
NETWORK 

Attack 

Attack Detection Metrics 500 iteration Neu-
ral Network (Without Feature Elimination) 
Number of Con-

nections Correctly 
Predicted 

Total Con-
nections 

% Cor-
rect 

DoS 5602 5741 97.6 

Normal (N/A) 9059 9711 93.3 

Probe 1103 1106 99.7 
Remote to 
Local 2135 2199 97.1 

User to Root 35 37 94.6 

The neural network was first trained using a maximum 
iteration range of 50 iterations, then 500 iterations to com-

pare the effect of more training sessions on the ability for 
the model to successfully predict network traffic. Our mod-
el trained on 500 iterations had an average success rate of 
96.28% over a period of 64.218 seconds while our 50-
iteration model’s average success rate was only 80.72% over 
a period of 5.964 seconds. Immediately following the train-
ing of a neural network using all network features provided 
to us in the NSL-KDD data set, we tried training a predic-
tive model using only important features that were estab-
lished using the Boruta package [8]. 

According to our the results from our importance test us-
ing Boruta, the three least important network features 
(is_hot_login, num_outbound_cmds, urgent) should be able 
to be safely eliminated from our training (and testing data) 
with a minimal resulting effect on the efficiency or effec-
tiveness of our predictive model. We were able to eliminate 
all three features from both of our data sets and train our 
neural network using the modified data. A summary of the 
results from testing our neural network on our testing data 
with feature elimination is shown in table IV below. 

TABLE IV.  RESULTS FROM ATTACK DETECTION VIA NEURAL 
NETWORK 

Attack 

Attack Detection Metrics 500 iteration Neu-
ral Network (With Feature Elimination) 

Number of Con-
nections Correctly 

Predicted 
Total Con-

nections 
% Cor-

rect 

DoS 5360 5741 93.4 

Normal (N/A) 9093 9711 93.6 

Probe 1102 1106 99.6 
Remote to 
Local 2163 2199 98.7 

User to Root 37 37 100 

As our results have shown, using feature elimination before 
training our neural network has increased the efficiency of 
our predictive model by 9 seconds (training took 55.2 sec-
onds) and increased effectiveness by 0.78%. While the in-
crease in predictive ability is marginal at best, the resulting 
speed reduction was significant with a 17% increase in effi-
ciency. Pre-processing our data by eliminating unimportant 
data features has thus been determined to be useful when 
applied to training a predictive model using a neural net-
work. 

4 CONCLUSION 
The R programming language has been used to com-

plete a variety of standard network security analysis tasks. 
The ability of the language and development environment 
to create and display statistical visuals with ease is a 
strength that adds value to its implementation. In addition 
to the many built-in options for the language, we have been 
able to utilize several third-party libraries with ease. Using 
the widely available Boruta package [7], we have success-
fully determined the contextual importance of each of our 
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data features and were able to determine which features 
could be eliminated from our training set without affecting 
our average classification accuracy. We were able to imple-
ment a neural network using the nnet package [8]. We 
trained a predictive model using that network with and 
without the data features that were established to be unim-
portant while increasing our training algorithm’s efficiency 
by 17% overall. 
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