
International Journal of Scientific & Engineering Research, Volume 11, Issue 3, March-2020
ISSN 2229-5518

IJSER © 2020
http://www.ijser.org

Analyzing Network Traffic Data Using a Neural
Network in the Statistical Computing Language R

Zachariah Pelletier, Munther Abualkibash

Abstract— The analysis of network traffic is crucial to the design and implementation network detection systems. The R language is a
statistical computing environment capable of performing a variety of data analysis techniques. In this paper, we will evaluate the R
language for its ability to pre-process network data from the NSL-KDD dataset and use third-party packages to analyze this data. We will
build a predictive model to classify testing data using a neural network from one of the widely available R packages.

Index Terms— R Language, Machine Learning, Neural Network, Network Traffic, NSL-KDD, nnet, Boruta

—————————— u ——————————

1 INTRODUCTION
 is a programming language and development envi-
ronment used primarily for statistical analysis and
graphics. As a widely available tool for statistics, many

data scientists and statisticians use R for data processing,
data analysis, and displaying visual data metrics. Although
popular among data scientists, the R language has also been
highly utilized by data miners, healthcare workers, gov-
ernment workers, and professionals in many other fields
[1]. One field that has a very low utilization of this language
is Information Security. Currently, Python is more favorable
among security professionals due to its versatility and abil-
ity to be used as a scripting language, data processing lan-
guage, and programming language.

R packages can be created to expand the initial set of
capabilities contained by the language and are able to be
processed by other statistics tools. In this paper the NSL-
KDD network dataset [2] will be used to evaluate several R
packages and libraries to determine the efficiency of the use
of R for detecting anomalies in network traffic. The ease of
use and readability of the R language will be evaluated as
well as the availability of popular libraries for completing
common tasks. Our primary benchmark for determining
the fit of the R language for completing security related
work will be the ability of the language to produce mean-
ingful visuals and perform predictive tasks in machine
learning such as detecting malicious network traffic in the
context of intrusion detection.

2 RELATED WORK
2.1 Using R For Anomaly Detection in Network

Traffic
Dennis Hock and Martin Kappes evaluate the R lan-

guage for its ability to perform anomaly detection in net-
work traffic [3]. Hock and Kappes use R for data pre-
processing, analysis operations, and detection of anomalies
in order to create an anomaly-based Intrusion Detection

System entirely in R and support their process with exper-
iment driven results. An anomaly-based Intrusion Detec-
tion System identifies attacks by finding deviations from
normal behavior. In order to evaluate R for use in Intrusion
Detection Systems in general, the authors used a wide
range of different properties and calculated their metrics
using the R programming language.

The authors propose an entirely R-based system of
anomaly detection on the premise that the resulting system
would allow for easier development of new detection
methods [3]. In order to thoroughly test the practicality of
the R language in such an application, a wide range of met-
rics are used to detect anomalies which can generally be
divided into two categories: volume-based and feature-
based.

Volume-based metrics detect anomalies on an overall
network level by counting properties of flows. Feature-
based metrics use the information in packet headers to de-
tect anomalies and can be used to detect special attacks like
a port scan that are not detectable via a volume-based
method. The authors used correlation analysis as their pri-
mary test on their metrics, however, they also performed
outlier detection and checked these metrics against thresh-
olds on the data in order to explore a wide range of tech-
niques in R. Aside from the use of tshark to extract data
from the traffic dumps, no outside software or libraries
were used to for the correlation analysis. The authors then
derived the metrics from their sample data and performed a
correlation analysis between abnormal data and their ex-
ample traffic. The authors concluded that the R language is
fully capable of both data pre-processing and analyzing
network traffic without the use of any third part R packag-
es.

2.2 A Study on NSL-KDD Dataset for Intrusion
Detection System Based on Classification
Algorithms

The NSL-KDD Dataset is a highly refined and improved
version of the KDD cup99 data set [4]. The NSL-KDD data
set is made up of labeled network connection vectors from
the same data that comprises the KDD cup99 data set. In
this work, Dhanabal and Shantharajah outline the various

R

————————————————
• Zachariah Pelletier is currently pursuing bachelors degree in Information

Assurance and Cyber Defense at Eastern Michigan University, United
States. E-mail: zpelleti@emich.edu

• Munther Abualkibash is an Assistant Professor at Eastern Michigan Uni-
versity, United States. E-mail: mabauilki@emich.edu

1637

IJSER

International Journal of Scientific & Engineering Research, Volume 11, Issue 3, March-2020
ISSN 2229-5518

features of each of the network connection vectors in the
data set and relate each attack type to their various category
of packet. The authors also briefly reflect on the improve-
ments that were made on the original data set and what
issues were addressed by those improvements.

The authors then analyze classification techniques for
detecting abnormal traffic and different methods of pre-
processing the vector data for classification. A main focus of
their efforts to pre-process the data rely on feature selection
of the vectors. Many classification techniques are more ac-
curate when applied to normalized data; the authors fo-
cused on using the J48, SVM, and Naïve Bayes classification
methods on the NSL-KDD dataset. The J48, SVM, and Na-
ïve Bays methods resulted in around a 98%, 95%, and 74%
classification accuracy respectively [4].

The authors conclude that the NSL-KDD dataset is the
best available dataset to simulate realistic network traffic
and test the performance of different IDS methods. The au-
thors also identified that an initial analysis and observation
phase improves the ability for the researcher to visualize
correlation in different vector features before pre-processing
and classifying the data.

2.3 A Pre-Clustering Method to Improve Anomaly
Detection
While anomaly detection is a widely accepted method

of detecting network misuse, the authors of this paper posit
that normal events outside of optimal activity such as un-
predictable user actions or application changes could de-
crease the predictive power of an IDS model. They evaluate
the use of pre-clustering or ‘pre-sorting’ of data in order to
mitigate the effects of false positives. The authors test pre-
clustering methods based on different features of the sam-
ple network traffic they use such as clustering based up IP
Address, different network traffic characteristics, and appli-
cation layer protocols [5].

Since anomaly detection works to detect differing statis-
tical deviations from the normal flow of network traffic, one
of the many advantages this method has is to detect previ-
ously unseen events over a network. This way, a model
does not have to be trained for every possible attack or up-
dated when the attack space changes, the detection system
can evolve to match the exterior threats. Coupled with an
outlier detection algorithm, pre-clustering can very effec-
tively increase the odds of proper classification when train-
ing a predictive model. The authors focus on three primary
metrics used to outline the properties of network traffic: IP
Addresses, flow characteristics, and Principle Component

Analysis/k-means clustering [5].

In order to effectively cluster IP addresses, the authors
attempted to separate traffic into subnets associated with
the local area network of the sender. Clustering by flow
characteristics was mainly achieved by separating data by
flow duration, byte size, and number of packets per flow
[5]. Since flow characteristics have historically been used to
predict application layer information, the authors hoped to
use this method to classify all data according to application
use. Finally, all of the data was split by application layer
protocols using a machine learning algorithm to perform a
k-means clustering of the data. Each resulting cluster has
the ability to potentially simplify the detection of certain
classes of attacks.

Clustering by each of these three methods increased the
ability of an anomaly detection system to detect network
anomalies by 36%. The authors used ROC curves to calcu-
late the ultimate tradeoff between true positives and false
positives. The area under the curve of the detection without
clustering was 0.47 while the area under the curve of detec-
tion with clustering was 0.83. The authors concluded that
clustering by these methods significantly increased the per-
formance of methods of anomaly detection.

2.4 Performance Analysis of NSL-KDD Dataset Using
ANN

 In this paper, the NSL-KDD dataset is analyzed using
ANN or Artificial Neural Network. Using an ANN, the au-
thors construct a model to provide intrusion detection
based upon network traffic vectors. They use the neural
network to detect both binary data (attack or normal traffic)
and classification by attack type (there are five attack types
in the NSL-KDD dataset). This paper is focused on intru-
sion detection surrounding smart and IoT devices, but the
methods used to develop the predictive model can be gen-
eralized to any network. The authors used a variety of per-
formance metrics and used these metrics to attain better
results with increased accuracy.

After gathering the results from the neural network
when applied to the NSL-KDD dataset, they found an
81.2% detection rate for binary attack vectors and a 79.9%
detection rate for classification of attacks [6]. In order to test
the performance of their predictive model against a bench-
mark, the authors compared their results with that of pre-
existing intrusion-detection schemes and found that their
system had a higher detection rate and performed well in
all categories, both for binary attack data and attack type
classification.

1638

IJSER

International Journal of Scientific & Engineering Research, Volume 11, Issue 3, March-2020
ISSN 2229-5518

3 EXPERIMENTAL METHODS

3.1 Initial Observation of Raw Vectors

Before any processing or normalization was performed
on the data vectors, we performed an initial observational
analysis on the data to determine any pre-existing correla-
tions that may exist between different features. A variety of
different feature combinations were checked, only a select
few of which were useful. We defined a useful visualization
as one that showed a clear correlation of data in a strong
enough pattern as to warrant investigation. Visualization
was conducted in the form of scatter plots using the qplot
function from the ggplot2 R library [7].

As can be seen in Figure 1, there is a relatively strong
correlation between TCP flag and the service that was used
in the attack. From here we can see that the S0 flag is a
strong predictor for a DoS attack and that RSTR and SH
flags are strong predictors for Probe attacks. There is no
strong correlation between any other flag and attack type.
In figure 2, protocol type was plotted against the duration
of the connection. Here we discovered that virtually no ma-

licious packets were sent using UDP or ICMP protocols al-
lowing us to filter out around 18.5% of the traffic when ana-
lyzing malicious packets in isolation.

Additionally, it should not be ignored that a majority of
the malicious traffic is of the tcp packet type. When looking
at the number of failed logins compared to the service that
was used for login, it is worth noting that any number of
failed logins greater than or equal to five using an FTP ser-
vice is a
strong indicator of a r2l attack. This relationship can be seen
in figure 3. When checking the count of source bytes against
the duration of the connection, we can see that for a source
byte count over 5e+08, a probe attack type is highly likely.
Additionally, any source byte count over 5e+04 also seems
to strongly indicate a Probe type attack.

When duration was plotted against source, but with a
third axis of the number of source bytes associated with the
packet, we can see a clear correlation between the size of
the packet (number of source bytes) and the duration of the
connection. A larger duration seems to be predictive of a

Fig. 1. Duration of the network connection vector plotted against
the protocol type of the connection vector. Attack type is color
coded.

Fig. 3. The number of failed logins to a user given a connection
vector plotted against the service used by that connection. At-
tack type is color coded.

Fig. 4. The number of source bytes transmitted by the connec-
tion vector plotted against the duration of the connection. Attack
type is color coded.

Fig. 2. Service used by the connection vector plotted against
TCP flag. Attack type is color coded.

1639

IJSER

International Journal of Scientific & Engineering Research, Volume 11, Issue 3, March-2020
ISSN 2229-5518

packet having an abnormally high number of source bytes.
This relationship can be seen in figure 5.

3.2 Automated Pre-Processing with Boruta
Many of the same processing, machine learning, and

deep
learning libraries that are available for Python are also avail-
able in R. For this project, we have decided to use Boruta to
determine the importance of each column in predicting an
attack output. Boruta is an open source library that works by
searching for relevant features in a dataset to determine im-
portance by comparing selected features correlation against
a random selection of predictors [8]. By using Boruta to test
features in our data set for importance, we can effectively
pre-process our data to eliminate superfluous or non-
predictive columns in our data set. In creating the Boruta
object, we checked the feature relevant importance of the
service against the type of attack that the vector was labeled
for with a maximum of 20 iterations through the generated
search tree. The relevant library function we used to retrieve
the results was getSelectedAttributes().

Boruta classifies a feature as one of three possible levels of
predictive qualities; a dataset feature is either important,
unimportant, or tentative [8]. The tentative category is re-
served for features that were found to be within a certain
margin of the importance cutoff, but needed to be run
through the more iterations of Boruta’s algorithms in order
to be strictly classified as either important or unimportant. It
is possible for all features to be classified, but what deter-
mines how fast (and under how many iterations) a dataset
can be fully classified depends on the hardware on which
the program is run. For instance, for the NSL-KDD dataset,
the Boruta function was run on two different machines with
differing hardware specifications. The faster computer was
able to classify all features in just 13 iterations in a period of
11 minutes while the slower computer could only classify 38
out of 41 features over 20 iterations in a period of 60

minutes. Both trial results as well as hardware specifications
can be found in table A.

TABLE I. HARDWARE SPECIFICATIONS

Iterations Hardware Specifications
Processor Memory GPU

11 (11 min) 3.20 GHz Intel Xeon CPU
E5-2667 v4 128 GB

NVIDIA
NVS 310

19 (60 min) 2.3 GHz Dual-Core Intel
Core i5

8 GB 2133
MHz
LPDDR3

Intel Iris
Plus
Graphics
640 1536
MB

 After running 19 iterations over the course of 60 minutes,
3 features were determined to be unimportant (is_hot_login,
num_outbound_cmds, urgent) and 3 features were tentative
(num_access_files, num_shells, su_attempted). Running a
second trial on a faster computer confirmed all tentative
features to be important, eliminating 3 columns from our
data set due to lack of importance. In order to evaluate the
performance of all selected features, we used the getSelecte-
dAttributes() function to retrieve scoring information from
Boruta. The highest ranking feature was determined to be
protocol_type with a median importance level of 34.330594.
The top 5 important network features and their stats can be
found in table B.

TABLE II. IMPORTANCE BENCHMARKS FOR NETWORK FEATURES

Feature
Importance Benchmarks for Network Fea-

tures
Mean Importance Min Im-

portance
Max Im-
portance

Protocol_type 34.330594 32.520757 36.0546544
Wrong_fragme
nt 32.695304 30.513209 33.8031660

Src_bytes 29.944937 28.694210 31.8848235

Srv_count 29.574201 26.431805 31.3077636
Dst_host_same
_src_port_rate 28.167884 27.003862 29.3803172

According to Dhanabal and Shantharajah as defined in [4],
protocol_type is simply the IP protocol that was used for a
specific network connection. Wrong_fragment is the number
of IP fragment packets that do not belong to the connection.
Src_bytes is considered the number of bytes from the source
of the packet. Srv_count is defined as the “Number of connec-
tions to the same service (port number) as the current connec-
tion in the past two seconds.” [4]. Finally,
dst_host_same_src_port_rate is defined as “The percentage of
connections that were to the same source port, among the con-
nections aggregated by feature 33 (the number of connections
having the same port number.” [4]. It can be concluded from
the results after pre-processing that the aforementioned fea-
tures are the five most important features to consider when
building a predictive model for network attacks.

Fig. 5. Duration of the connection plotted against the service
used with the number of source bytes on a third axis.

1640

IJSER

International Journal of Scientific & Engineering Research, Volume 11, Issue 3, March-2020
ISSN 2229-5518

3.3 Building a Predictive Model with nnet
For each implementation of our predictive model (i.e.

one that detects network anomalies), we will try to build
our model with and without the features that we deter-
mined to be unimportant in order to determine what effect
on efficiency of the building and training process it has (if
any). Each trial was also conducted with and without pre-
clustering to allow for a variety of pre-processing tech-
niques to be utilized. This predictive model was generated
using a neural network generated by the R Library nnet [8].
Nnet is a “Software for feed-forward neural networks with
a single hidden layer, and for multinomial log-linear mod-
els” [9]. In order to factor our data frame such that the data
can be processed correctly, all of the imported csv data had
to be sorted into categories labeled by attack. Once this pre-
processing step was complete, the training of the neural
network could begin. We wanted to get a thorough, but
accurate sample from our data with which to train our neu-
ral network.

In order to accomplish this, we selected a randomized
sample of size 5000 from a slice of the first 10000 rows or
our data, then a second slice from the second 10000 rows of
our data and so on. We then called the nnet subroutine [8]
and passed in the following arguments: we trained based
upon the attack type using our training data provided in
the NSL-KDD data set, used a subset of our randomized
sample slices, used a neural network consisting of 5 neu-
rons, a decay of 1.0e-5 and a maximum of 500 training itera-
tions. After training, we imported the test data (also pro-
vided in the NSL-KDD dataset) and used our predictive
model to predict the outcome of all test network connection
vectors. In order to accomplish this, we used nnet’s predict
subroutine passing in our trained neural network and the
test data. Finally, we displayed the resulting data in a table
format and calculated the percentage of connection vectors
that were correctly predicted as the correct attack type
(normal data was also included and predicted with an at-
tack type of N/A). The results from this process are shown
in table III below.

TABLE III. RESULTS FROM ATTACK DETECTION VIA NEURAL
NETWORK

Attack

Attack Detection Metrics 500 iteration Neu-
ral Network (Without Feature Elimination)
Number of Con-

nections Correctly
Predicted

Total Con-
nections

% Cor-
rect

DoS 5602 5741 97.6

Normal (N/A) 9059 9711 93.3

Probe 1103 1106 99.7
Remote to
Local 2135 2199 97.1

User to Root 35 37 94.6

The neural network was first trained using a maximum
iteration range of 50 iterations, then 500 iterations to com-

pare the effect of more training sessions on the ability for
the model to successfully predict network traffic. Our mod-
el trained on 500 iterations had an average success rate of
96.28% over a period of 64.218 seconds while our 50-
iteration model’s average success rate was only 80.72% over
a period of 5.964 seconds. Immediately following the train-
ing of a neural network using all network features provided
to us in the NSL-KDD data set, we tried training a predic-
tive model using only important features that were estab-
lished using the Boruta package [8].

According to our the results from our importance test us-
ing Boruta, the three least important network features
(is_hot_login, num_outbound_cmds, urgent) should be able
to be safely eliminated from our training (and testing data)
with a minimal resulting effect on the efficiency or effec-
tiveness of our predictive model. We were able to eliminate
all three features from both of our data sets and train our
neural network using the modified data. A summary of the
results from testing our neural network on our testing data
with feature elimination is shown in table IV below.

TABLE IV. RESULTS FROM ATTACK DETECTION VIA NEURAL
NETWORK

Attack

Attack Detection Metrics 500 iteration Neu-
ral Network (With Feature Elimination)

Number of Con-
nections Correctly

Predicted
Total Con-

nections
% Cor-

rect

DoS 5360 5741 93.4

Normal (N/A) 9093 9711 93.6

Probe 1102 1106 99.6
Remote to
Local 2163 2199 98.7

User to Root 37 37 100

As our results have shown, using feature elimination before
training our neural network has increased the efficiency of
our predictive model by 9 seconds (training took 55.2 sec-
onds) and increased effectiveness by 0.78%. While the in-
crease in predictive ability is marginal at best, the resulting
speed reduction was significant with a 17% increase in effi-
ciency. Pre-processing our data by eliminating unimportant
data features has thus been determined to be useful when
applied to training a predictive model using a neural net-
work.

4 CONCLUSION
The R programming language has been used to com-

plete a variety of standard network security analysis tasks.
The ability of the language and development environment
to create and display statistical visuals with ease is a
strength that adds value to its implementation. In addition
to the many built-in options for the language, we have been
able to utilize several third-party libraries with ease. Using
the widely available Boruta package [7], we have success-
fully determined the contextual importance of each of our

1641

IJSER

International Journal of Scientific & Engineering Research, Volume 11, Issue 3, March-2020
ISSN 2229-5518

data features and were able to determine which features
could be eliminated from our training set without affecting
our average classification accuracy. We were able to imple-
ment a neural network using the nnet package [8]. We
trained a predictive model using that network with and
without the data features that were established to be unim-
portant while increasing our training algorithm’s efficiency
by 17% overall.

REFERENCES
[1] “Visits to R by Industry,” Accessed on Jan. 8, 2020. [Online].

Available:
https://www.guru99.com/images/r_programming/032918_1002
_WhatisRProg1.png

[2] “NSL-KDD Dataset,” Accessed on Jan. 8, 2020. [Online]. Available:
https://www.unb.ca/cic/datasets/nsl.html

[3] D. Hock, M Kappes, “Using R for anomaly detection in network
traffic,” ResearchGate, 2013. Frankfurt University of Applied
Sciences.

[4] L. Dhanabal, Dr. S.P. Shantharajah., “A Study on NSL-KDD
Dataset For Intrusion Detection System Based on Classification
Algorithms,” International Journal of Advanced Research in
Computer and Communication Engineering, 2015. Kumaraguru
College of Technology, Coimbatore, India and Sona College of
Technology, Salem, India.

[5] D. Hock, B.V. Ghita, M. Kappes, “A Pre-Clustering Method to
Improve Anomaly Detection,” ReserachGate, 2016. Frankfurt
University of Applied Sciences and University of Plymouth.

[6] B. Ingre and A. Yadav, "Performance analysis of NSL-KDD
dataset using ANN," 2015 International Conference on Signal
Processing and Communication Engineering Systems, Guntur, 2015,
pp. 92-96.

[7] I. Keka, B. Çiço, “Data Visualization as Helping Technique for
Data Analysis, Trend Detection and Correlation of Variables
Using R Programming Language,” Mediterrnean Conference on
Embedded Computing, 2019. AAB College, Prishtina, Kosovo and
Epoka University, Tirana, Albania.

[8] “Package ‘Boruta’,” Jul. 17, 2018. Accessed on Feb. 5, 2020. [Online].
Available: https://cran.r-
project.org/web/packages/Boruta/Boruta.pdf

[9] “Package ‘nnet’,” Feb. 25, 2020. Accessed on Feb. 20, 2020. [Online].
Available: https://cran.r-
project.org/web/packages/nnet/nnet.pd

1642

IJSER

